4+ years of experience as a professional ML or software engineer with a proven track record of delivering production ML systems at scale. Proficiency in at least one key programming language (preferably Python or Golang; Scala or Ruby also considered). Expertise in designing and architecting large-scale ML pipelines and distributed systems. Deep experience with distributed data processing frameworks (Spark, Databricks, or similar). Strong cloud expertise (AWS, Azure, or GCP) and experience with deployment platforms (ECS, EKS, Lambda). Proven ability to optimize system performance and make informed trade-offs in ML model and system design. Experience leading technical projects and mentoring engineers. Bachelor’s or Master’s degree in Computer Science or equivalent professional experience. Experience with embedding-based retrieval, large language models, advanced recommendation or ranking systems (Nice to Have). Expertise in experimentation design, causal inference, or ML evaluation methodologies (Nice to Have).